6 research outputs found

    Synthesis and inhibitory properties of some carbamates on carbonic anhydrase and acetylcholine esterase

    Get PDF
    A series of carbamate derivatives were synthesized and their carbonic anhydrase I and II isoenzymes and acetylcholinesterase enzyme (AChE) inhibitory effects were investigated. All carbamates were synthesized from the corresponding carboxylic acids via the Curtius reactions of the acids with diphenyl phosphoryl azide followed by addition of benzyl alcohol. The carbamates were determined to be very good inhibitors against for AChE and hCA I, and II isoenzymes. AChE inhibition was determined in the range 0.209-0.291 nM. On the other hand, tacrine, which is used in the treatment of Alzheimer's disease possessed lower inhibition effect (Ki: 0.398 nM). Also, hCA I and II isoenzymes were effectively inhibited by the carbamates, with inhibition constants (Ki) in the range of 4.49-5.61 nM for hCA I, and 4.94-7.66 nM for hCA II, respectively. Acetazolamide, which was clinically used carbonic anhydrase (CA) inhibitor demonstrated Ki values of 281.33 nM for hCA I and 9.07 nM for hCA II. The results clearly showed that AChE and both CA isoenzymes were effectively inhibited by carbamates at the low nanomolar levels

    Switchable LED-based laparoscopic multispectral system for rapid high-resolution perfusion imaging

    Get PDF
    SIGNIFICANCE: Multispectral imaging (MSI) is an approach for real-time, quantitative, and non-invasive tissue perfusion measurements. Current laparoscopic systems based on mosaic sensors or filter wheels lack high spatial resolution or acceptable frame rates.AIM: To develop a laparoscopic system for MSI-based color video and tissue perfusion imaging during gastrointestinal surgery without compromising spatial or temporal resolution.APPROACH: The system was built with 14 switchable light-emitting diodes in the visible and near-infrared spectral range, a 4K image sensor, and a 10 mm laparoscope. Illumination patterns were created for tissue oxygenation and hemoglobin content monitoring. The system was calibrated to a clinically approved laparoscopic hyperspectral system using linear regression models and evaluated in an occlusion study with 36 volunteers.RESULTS: The root mean squared errors between the MSI and reference system were 0.073 for hemoglobin content, 0.039 for oxygenation in deeper tissue layers, and 0.093 for superficial oxygenation. The spatial resolution at a working distance of 45 mm was 156  μm. The effective frame rate was 20 fps.CONCLUSIONS: High-resolution perfusion monitoring was successfully achieved. Hardware optimizations will increase the frame rate. Parameter optimizations through alternative illumination patterns, regression, or assumed tissue models are planned. Intraoperative measurements must confirm the suitability during surgery.</p
    corecore